
TYPE Original Research
PUBLISHED 26 March 2024
DOI 10.3389/frobt.2024.1369566

OPEN ACCESS

EDITED BY

Richard Jiang,
Lancaster University, United Kingdom

REVIEWED BY

Qijie Zhao,
Shanghai University, China
Changyuan Wang,
Xi’an Technological University, China

*CORRESPONDENCE

Lucas Falch,
lucas.falch@ost.ch

RECEIVED 12 January 2024
ACCEPTED 26 February 2024
PUBLISHED 26 March 2024

CITATION

Falch L and Lohan KS (2024), Webcam-based
gaze estimation for computer screen
interaction.
Front. Robot. AI 11:1369566.
doi: 10.3389/frobt.2024.1369566

COPYRIGHT

© 2024 Falch and Lohan. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with
these terms.

Webcam-based gaze estimation
for computer screen interaction

Lucas Falch* and Katrin Solveig Lohan

Institute for the Development of Mechatronic Systems EMS, Eastern Switzerland University of Applied
Sciences (OST), Buchs, Switzerland

This paper presents a novel webcam-based approach for gaze estimation
on computer screens. Utilizing appearance based gaze estimation models,
the system provides a method for mapping the gaze vector from the user’s
perspective onto the computer screen. Notably, it determines the user’s 3D
position in front of the screen, using only a 2D webcam without the need
for additional markers or equipment. The study presents a comprehensive
comparative analysis, assessing the performance of the proposed method
against established eye tracking solutions. This includes a direct comparison
with the purpose-built Tobii Eye Tracker 5, a high-end hardware solution,
and the webcam-based GazeRecorder software. In experiments replicating
head movements, especially those imitating yaw rotations, the study brings
to light the inherent difficulties associated with tracking such motions using
2D webcams. This research introduces a solution by integrating Structure
from Motion (SfM) into the Convolutional Neural Network (CNN) model.
The study’s accomplishments include showcasing the potential for accurate
screen gaze tracking with a simple webcam, presenting a novel approach
for physical distance computation, and proposing compensation for head
movements, laying the groundwork for advancements in real-world gaze
estimation scenarios.

KEYWORDS

eye tracking, gaze tracking, webcam based, gaze on screen, gaze estimation, structue
frommotion

1 Introduction

Gaze tracking serves as a prevalent technique for comprehending human attention. Its
utility extends to gauging users’ attitudes and attention,making it a valuable tool in fields like
market research, adaptive information systems, human robot interaction andmore recently,
entertainment. Despite a reduction in costs for specialized eye tracking equipment, their
ubiquity remains limited. Although the idea of using webcams for eye tracking is not new,
existing solutions have yet to achieve the level of accuracy and sampling rates found in even
basic commercial eye trackers like those from Tobii Group (2023).

Webcam-based eye tracking solutions often provide a gaze vector from the user’s
viewpoint, indicating the direction of the person’s gaze. However, these solutions often lack
the ability to project this gaze vector into the environment due to the unknown distance
between, for instance, a computer screen and the individual. In this study, we present a novel
webcam-based gaze tracking approach designed for precise determination of a user’s gaze
on a computer screen. Our approach utilizes appearance-based gaze estimationmodels, like
the OpenVino model (OpenVINO, 2023) or a model trained on the ETH-XGaze dataset
(hysts on github, 2023), to determine a unit gaze vector.This vector facilitates the calculation
of the distance between the user and the computer screen. It is important to note that our

Frontiers in Robotics and AI 01 frontiersin.org

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2024.1369566
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2024.1369566&domain=pdf&date_stamp=2024-03-22
mailto:lucas.falch@ost.ch
mailto:lucas.falch@ost.ch
https://doi.org/10.3389/frobt.2024.1369566
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frobt.2024.1369566/full
https://www.frontiersin.org/articles/10.3389/frobt.2024.1369566/full
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Falch and Lohan 10.3389/frobt.2024.1369566

approach works with any model providing a gaze vector from the
user’s view point. The accuracy of our method is thus contingent
on the precision of the model supplying the unit gaze vector. Our
approach considers the user’s spatial positioning in front of the
screen, allowing us to compute the user’s physical distance from the
screen using only a 2D webcam, eliminating the need for additional
markers or equipment.

As part of this study, we conduct a comprehensive comparative
analysis, evaluating the performance of our proposed method
against established eye-tracking solutions. This includes a head-
to-head assessment with the purpose-built Tobii Eye Tracker 5,
a cutting-edge hardware solution. We also examine the webcam-
based GazeRecorder software and provide insights into our choice
of this particular software, which will be explained further in the
subsequent section.

The organization of the rest of the paper is as follows. In
Section 2, the related work is presented while indicating the
shortcomings of the existing work. Section 3 outlines the associated
methodologies and underlying principles used in the present work.
In Section 4 the developedmethods are applied and experiments are
conducted. A conclusion and directions for possible future work are
presented in Section 5.

2 Related work

Eye gaze tracking has been a topic of significant research interest
for decades, with various techniques and applications developed
to capture and analyze the direction and movement of the eyes in
order to infer the user’s attention, intention, or interest. There are
various techniques available to track human eye gaze. Broadly, two
main approaches dominate the field of eye gaze tracking: model-
based and appearance-based (Ferhat and Vilariño 2016; Kar and
Corcoran 2017).

Model-based methods rely on meticulously crafted geometric
models of the eye. In corneal reflection techniques, external lighting,
often near infra-red (NIR) LEDs, create corneal glints used to extract
the eye region and estimate gaze through 2D regression, mapping
the vector between pupil center and glint to the corresponding gaze
coordinate on the screen (Yoo and Chung, 2005; Zhu and Ji, 2005;
Hennessey et al., 2006). Conversely, shape-based methods derive
gaze direction from observed eye shapes like pupil centers and iris
edges (Chen and Ji, 2008; Hansen and Pece 2005). These models are
employed in 3D-based approaches to estimate corneal center, optical
and visual axes, and ultimately, gaze coordinates by determining
intersections with the scene (Sogo, 2013). Additionally, cross-ratio
based methods utilize four LEDs placed at screen corners, reflecting
off the cornea to estimate gaze projection on the screen plane
(Arar et al., 2016).

However, appearance-basedmethods take a different approach,
directly utilizing eye images as input. These methods often employ
feature extraction techniques, like face and eye detection, before
employing advanced algorithms like CNNs to estimate the point
of regard (PoR) (Tan et al., 2002; Sewell and Komogortsev, 2010;
Muhammad Usman Ghani and Chaudhry, 2013). For example, Chi
et al. Chi et al. (2009) leverage an active infrared light source and
a single camera to calculate the gaze and utilize a neural network
to compensate for head movements by tracking relative positions

between pupil and corneal reflex center. Recent advancements
underscore the dynamic nature of this field, with newer methods
emerging that do not rely on external lighting and the advent
of large-scale datasets has significantly advanced deep learning
methodologies by providing millions of annotated samples for
training CNNs to map facial attributes and eye images to gaze
directions. Zhang et al. (2015) presented the MPIIGaze dataset,
where they employed a 3D facial shape model to estimate the
3D poses of detected faces. Their CNN architecture learned the
mapping from head poses and eye images to gaze directions in
the camera coordinate system, considering the 3D rotation of
the head from its coordinate system to the camera’s. Sugano et al.
(2014) used a similar approach, training a 3D gaze estimator and
performing 3D reconstruction to generate dense training data for
eye images. Ground truth 3D gaze directions were provided in the
3D world coordinate system. Krafka et al. (2016) introduced the
GazeCapture dataset and trained a CNN for eye tracking. They
achieving tracking errors of 1.71cm and 2.53cm on iPhone and
tablet devices, respectively. Their end-to-end CNN model for gaze
prediction was trained without relying on features such as head pose
or eye center location. The dataset was meticulously collected using
iPhones and iPadswith known camera locations and screen sizes and
it is unclear how it performs on different devices, screens or cameras.
Another contribution by Zhang et al. (2017) proposed a method for
learning a gaze estimator solely from full-face images in an end-to-
end manner. They introduced a spatial weights CNN method that
leveraged information from the entire face. Additionally, the ETH-
XGaze dataset (Zhang et al., 2020), with onemillion labeled samples,
has emerged as a valuable resource for gaze estimation research.
Numerous studies have utilized this dataset, with Cai et al. (2021)
achieving top-ranking performance on the ETH-XGaze competition
leaderboard, attaining an average angular error of 3.11°. Many of
these appearance-based method only provide a gaze vector and
compare their approach between datasets and gaze vector accuracy
without even considering the actual point where a person is looking.

Therefore, there remains a lack of consensus in the literature
regarding how to quantify the accuracy of gaze estimation
approaches. While it would seem logical to denote accuracy as the
error in gaze angle estimation, some studies insteadmeasure it as the
Euclidean distance between the estimated point of gaze and the true
Point of Regard (PoR). Typically, researchers determine the true and
estimated PoR by instructing test subjects to focus on specific points
displayed on a screen. The challenge with using Euclidean distance
lies in the absence of information regarding the distance between
the screen and the user, making it challenging to compare different
methods effectively.

In a recent study Heck et al. (2023) analyzed 16 publicly
available webcam based gaze estimation software options, offering
a comprehensive overview of the techniques employed. The
evaluation was performed with a fixed head position and an
average user-to-screen distance of 60 cm, as only a subset of the
solutions allowed for head movements. In their study, the online
eye tracker WebGazer (Papoutsaki et al., 2016) with a mentioned
accuracy of 4.06cm detects the pupil in a video frame and uses
the location to linearly estimate a gaze coordinate on the screen.
In addition the eye is treated as a multi-dimensional feature vector
using clmtrackr (Audun, 2023) and histogram equalization similar
to Xu et al. (2015). To map the pupil location and eye features

Frontiers in Robotics and AI 02 frontiersin.org

https://doi.org/10.3389/frobt.2024.1369566
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Falch and Lohan 10.3389/frobt.2024.1369566

onto the screen they use continual self-calibration through user
interactions, by assuming that gaze locations on the screen match
the coordinates of that interaction. Features and user interactions
such as clicks and cursor movements are the inputs for a regularized
linear regression model to match eye features to gaze locations.
The most accurate webcam-based eye tracking solution observed
is GazeRecorder (GazeRecorder, 2023) with an accuracy of 1.75cm,
a commercial solution, however details about the gaze estimation
method is unknown. Allowing headmovements typically results in a
decrease in accuracy, even observed in GazeRecorder GazeRecorder
(accessed 2023), which experienced a 9% reduction.

2D gaze estimation typically involves formulating a regression
problem, where the input image is mapped to a 2-dimensional on-
screen gaze location p using a regression function f(I), where f
represents the regression function and p is typically defined on the
target screen (Zhang et al., 2017). However, the trained regression
function may not be directly applicable to different cameras without
addressing differences in projectionmodels. A common assumption
in many approaches is that the target screen plane remains fixed
in the camera coordinate system, limiting the freedom of camera
movement after training, which poses a practical constraint. Many
existing methods report only the error in centimeters of the target
point without mentioning the distance between the target plane
and the user. They also often compare different methods based on
specific datasets, overlooking real-world scenarios where users sit in
front of a screen and focus on specific points of interest.

In this research project, we aim to overcome this limitation by
proposing a method to determine the physical distance between
the user and the screen, using only the unit gaze vector provided
by many appearance-based methods. In these methods, CNNs are
typically trained on labeled datasets, yielding a gaze vector without
projecting it onto a surface. In our proposed approach, we will select
two trained CNN gaze vector models and provide a methodology to
project the gaze vector onto a screen.

3 Methodology

3.1 Acquisition of gaze vector

In this work, we use OpenVINO (Open Visual Inference and
Neural Network Optimization) an open-source toolkit developed
by Intel for computer vision and deep learning applications. The
toolkit includes a range of pre-trained models to simplify the
development of computer vision and deep learning applications.
The trained models exhibit an optimized format, enabling them
to run at maximum efficiency on Intel hardware. Specifically, we
use the pre-trained “gaze-estimation-adas-0002”model, which relies
on “face-detection-adas-0001,” “head-pose-estimation-adas-0001”
and “facial-landmarks-35-adas-0002”models OpenVINO (accessed
2023). First, the face is detected in the webcam video stream. With
that, the eye-centers and eyes are detected within the face using
“landmarks-regression-retail-0009” model. The detected face is also
the input of the head pose estimation model. The gaze estimation
model provides a gaze vector corresponding to the direction of a
person’s gaze in a Cartesian coordinate system in which the z-axis
is directed from person’s eyes (mid-point between left and right
eyes’ centers) to the camera center, the y-axis is vertical, and the

FIGURE 1
Definition of the gaze coordinate system, denoted as G, where the
x-axis indicates the leftward direction, the y-axis points upwards, and
the z-axis extends towards the screen.

x-axis is orthogonal to z and y. This gaze vector is a unit vector
and the length is unknown. The subsequent sections will clarify the
definition of the coordinate system and visually present them in
Figures 1, 2. We further make use of the “pl gaze estimation” model
hysts on github (accessed 2023), sourced from a GitHub repository
housing trained models derived from various datasets, including
MPIIGaze (Zhang et al., 2015), MPIIFaceGaze (Zhang et al., 2017),
and ETH-XGaze (Zhang et al., 2020). Specifically, we utilize the
model trained on the ETH-XGaze dataset, as showcased in their
demo. While numerous gaze vector models are accessible, including
offerings from Nvidia (NVIDIA, 2023), we opt for the Intel model,
aligning with our hardware infrastructure. Additionally, an online
competition assessing the accuracy of gaze vectors for the ETH-
XGaze dataset is available (CodaLab, 2023).

3.2 Definition of coordinate systems

The OpenVino gaze estimation model’s input is an image of a
person and it delivers a unit gaze vector indicating the direction
of the person’s gaze. This gaze vector is represented within the
coordinate system denoted as G, as illustrated in Figures 1, 2.
Specifically, the OpenVino model provides this unit gaze vector
within the G coordinate system, with its location depicted between
the eyes in Figure 1. While the exact placement of the gaze
coordinate system G is not specified on the OpenVino website, its
precise location is inconsequential for our method. We determine
its position relative to the screen through our proposed approach, as
detailed in subsequent sections.

Regarding the ETH-XGaze dataset (Zhang et al., 2018;
Zhang et al., 2020), they outline an image normalization procedure
where they designate the face center as the midpoint of the four
eye corners and two nose corners. Our alignment process for
gaze vectors produced by CNN models involves ensuring that the

Frontiers in Robotics and AI 03 frontiersin.org

https://doi.org/10.3389/frobt.2024.1369566
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Falch and Lohan 10.3389/frobt.2024.1369566

FIGURE 2
Definition of coordinate systems. S is the screen coordinate system, W
the world or camera coordinate system and G the gaze coordinate
system additionally depicted in Figure 1. The green vectors illustrate
the process of projecting a unit gaze vector onto the screen, as
described in detail in Section 3.3.

z-component of the vector is positive when oriented towards the
screen. Additionally, the x-component is positive when looking to
the left, and the y-component is positive when looking upward.
However, this definition is not obligatory for the functionality of
our method; only the adjustment of the rotation matrix (Eq. 8)
is necessary to align it with the screen coordinate system S, and
rotation matrix with the world coordinate system W, representing
the camera coordinate system.

Because the CNN models deliver only a unit vector into the
direction where a person is looking, the location of the gaze on the
screen is unknown. Therefore, a projection of the gaze vector onto
the screen is necessary. In this paper, we provide a methodology to
project a gaze vector with unit length onto a screen with unknown
distance to the screen.

3.3 Projecting gaze unit vector onto
computer screen

In the upcoming sections, we will present a novel approach for
calculating a homogeneous transformation matrix to determine the
position of a user looking at a screen through a webcam. We’ll
employ the following notation for the homogeneous transformation
matrix (Eq. 1).

ATB = [

[

ARB
AtB

0T 1
]

]
(1)

ATB is the transformation matrix that transforms a vector in
coordinate system B to coordinate systemA. ARB are the unit vectors
of the coordinate system B presented in coordinate system A and
AtB is the displacement from A to coordinate system B presented in
coordinate system A.

3.3.1 Transformation matrix screen to gaze
The approach to ascertain the user’s distance from the screen

and subsequently project the gaze vector onto the computer screen
involves the computation of the matrix STG. The transformation
matrix STG allows the transformation of the gaze vector Gg ∈
ℝ3 from the gaze coordinate system G to the screen coordinate
system S (Eqs 2, 3).

Sg = STG⋅
Gg

(2)

= [

[

SRG
StG

0T 1
]

]
λG ̂g

(3)

= SRGλ
G ̂g+ StG (4)

The gaze unit vector, denoted as G ̂g ∈ ℝ3, and the scalar λ ∈ ℝ,
project the gaze vector onto the screen. To find λ such that the gaze
vector G ̂g intersects with the screen, the scalar product of the screen’s
z-axis and the vector located on the screen’s plane must be zero (as
shown in Eq. 5).

GzT (λG ̂g− GtS) = 0

(5)

Gz = GRS ⋅ [0,0,1]
T (6)

For a clearer understanding of this equation, please refer to Figure 2,
where the dashed green arrowheads represent the vectors involved.
The point p corresponds to the point on the screen where the
person is looking. The vector GtS originates from the transformation
matrix STG, which we will determine in the regression problem
discussed in Section 3.3.3. The scalar product with the z-coordinate
of the screen coordinate system becomes zero when the vector
(λG ̂g− GtS) lies on the plane of the screen, allowing us to determine
the scalar λ. Eq. 6 rotates the z-axis ([0,0,1]) in screen coordinates to
the gaze coordinate system, where GRS follows from the definition
of Figure 2. With that we can compute the scaling factor λ from
Eq. 5.

λ =
GzT GtS
GzT G ̂g

(7)

As mentioned earlier the “gaze-estimation-adas-0002” model
takes as input the two eye images and the head rotation angle and
delivers a gaze unit vector, whereby the coordinate systemof the gaze
vector is rotated so that its x/y-plane is parallel to the x/y-plane of
the camera. If the webcam is mounted on top of the screen and the
x/y-plane of the webcam coincides with the x/y-plane of the screen

Frontiers in Robotics and AI 04 frontiersin.org

https://doi.org/10.3389/frobt.2024.1369566
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Falch and Lohan 10.3389/frobt.2024.1369566

we can determine the rotation matrix SRG.

SRG =
[[[[

[

−1 0 0

0 −1 0

0 0 1

]]]]

]

(8)

Therefore, the only unknown is the translation vector StG ∈ ℝ
3

in Eq. 4. This translation vector is part of the homogeneous
transformation matrix, which is determined through a regression
analysis (Section 3.3.3).

3.3.2 Calibration process
To gather data for the regression problem, we initiated a

calibration process in which a user is presented with points
on the screen and instructed to direct their gaze towards these
points, which is the standard method. Our approach simplifies
the calibration process, involving the presentation of just four
calibration points, denoted as S ̃gi ∈ C, on the screen. These
calibration points, serve as the user’s focal points. Each point is
observed for approximately 2 s, yielding multiple data points for the
regression problem from a single point of focus. Transitioning to
a new point of focus may introduce a brief lag in gaze redirection,
leading to instances where the user does not precisely follow the
presented point on the screen. Hence, in the data stream, any
erroneous data points, arising when the user gazes at positions
different from the presented point, are eliminated prior to the
application of the regression model. It is important to note that
users were directed to maintain a steady head position during the
calibration process, despite not employing a headrest.

3.3.3 Regression problem
With a set C of known calibration points S ̃gi ∈ C displayed on the

screen and the gaze vector G ̂g provided by any gaze vector estimation
model, we can determine the translation vector StG by formulating a
regression problem in the following way (Eqs 9–12).

min
x

C

∑
i
‖S ̃gi − Sgi‖22

(9)

with Sgi= SRGλ
iG ̂gi + StG

(10)

λi =
GzT ⋅ (−SRT

G
StG)

GzT G ̂gi

(11)

x = [StxG,
StyG,

StzG]
T (12)

The coordinates Stx,y,zG represent the x, y, and z coordinates of
the vector StG.

Sgi is derived in Eq. 4, while λi is obtained from
Eq. 7. Given the knowledge of the calibration points’ poses and
thus the distances between these points on the screen, we have
both a physical reference and a direction provided by the set of
gaze vectors Ggi. Leveraging this information, we can determine
the 3D location of the gaze coordinate system G through the
proposed regression problem. Subsequently, we can ascertain the

homogeneous transformation matrix STG and project the unit gaze
vector G ̂g onto the computer screen, as detailed in Section 3.3.

3.3.4 Improve gaze estimation
The accuracy of the gaze vector model, in this case, the

OpenVino gaze vector, is constrained by inherent limitations.
Notably, the accuracy of the gaze vector provided by OpenVino
exhibits a Mean Absolute Error (MAE) of 6.95° OpenVINO
(accessed 2023). This inaccuracy became apparent in the
experiment, where four points forming a rectangular pattern were
presented on the screen. Examination of the raw gaze data from the
OpenVino model shows that the recorded coordinates do not align
with the expected rectangular pattern (Figure 3) that were presented
as calibration points on the screen. This occurs because variations
in lighting conditions, such as light sources positioned at the side,
can result in reflections in the eye, potentially distorting the output.

However, during the calibration process we are able to reduce
this inaccuracy, which we will explain next. A homogeneous
transformationmatrix, incorporating a gaze vector as the translation
vector from the calibration, yields an accurate projection for
a specific calibration point, albeit limited to that point alone.
Consequently, we derive additional transformation matrices from
calibration points, each accurate only for its respective calibration
point location. Instead the transformation matrix determined in
the previous Section 3.3.3 provides a comprehensive estimation
across all points. The subsequent equations provide these additional
estimations (Eqs 13, 14).

STp = [

[

I Stp
0T 1
]

]
(13)

pTG = [

[

SRG −
SRT

Gλ
G ̂g

0T 1
]

]
(14)

STG =
STp

pTG (15)

p ∈ P is the set of calibration points p and G ̂g is the unit gaze vector
from a person looking at this point during the calibration process.
Stp are the calibration points displayed on the screen during the
calibration process. The scaling factor λ is computed over Eq. 7
by using GtS from the transformation matrix determined over the
regression process. The matrix STG computed in Eq. 15 transforms
the unit gaze vector for this specific point to the screen with
zero error.

In total, this procedure provides n+ 1 transformations STG,
with n for the number of calibration points and an additional one
determined through the regression problem, providing the distance
between the user and the computer screen.

To determine the final gaze point on the screen, we first compute
an initial gaze point on the screen through the transformationmatrix
determined through the regression analysis in Section 3.3.3, which
will provide an initial guess. We improve this guess by computing
the euclidean to the known calibration points on the screen and
choosing as additional transformation matrix, the one closest to
this calibration point. As an approximation we define the median

Frontiers in Robotics and AI 05 frontiersin.org

https://doi.org/10.3389/frobt.2024.1369566
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Falch and Lohan 10.3389/frobt.2024.1369566

FIGURE 3
On the left are the already filtered x and y coordinates of the raw unit gaze vector. Different colors present different calibration points. The red cross
presents the median of the noisy gaze vector values. On the right are the raw gaze vectors projected onto the computer screen. The yellow star shows
the location, where the points were displayed in the calibration process.

between these two gaze estimation points as the final point on
the screen.

Additionally, we propose a framework to compensate for head
movements, specifically where a user moves to the left or right in
front of the screen. To consider these movements we make use of
structure from motion.

3.3.5 Structure from motion for head movements
Structure from Motion (SfM) is a powerful technique in

computer vision that aims to extract three-dimensional (3D)
information from a collection of two-dimensional (2D) frames. One
of the fundamental problems in SfM is to simultaneously estimate
multiple crucial parameters from a set of point correspondences
between two images (Hartley and Zisserman 2004). These
parameters include the 3D coordinates of points in space (Wp), the
relative motion of cameras (WR, W t), and the intrinsic properties
of the cameras (K1,K2). The intrinsic properties of the camera
are determined over the OpenCV camera calibration library
(OpenCV, 2023). For feature matching between consecutive frames
we use the OpenVino “facial-landmarks-35-adas-0002” library
(Intel Corporation, 2023). With these features we determine the
essential matrix E and recover the rotation matrix and translation
vector between two frames. By triangulating the points we are able
to get 3D points in the world/camera coordinate system. However,
we do not know the scaling factor, because there is no reference
distance in the video stream. Therefore, we formulate a complete
regression problem to determine the homogeneous transformation
matrix WTG(t). Moving the head to the left or to the right shifts
the gaze coordinate system G. With SfM we are able to determine
a unit translation vector of the transformation matrix WTG(t) from

the world coordinate system W to the gaze coordinate system G. As
mentioned earlier, given the unknown scaling factor, we will derive
the gaze vector Sg(t) on the screen using the following equations
(Eqs 16–18).

Sg (t)=STW⋅WTG (t) ⋅Gg (t)

(16)

= [

[

SRW
StW

0T 1
]

]

[

[

WRG μW ̂tG (t)

0T 1
]

]
λG ̂g (t)

(17)

= SRW
WRGλ

G ̂g (t) + SRWμW ̂tG (t) + StW (18)

With μ ∈ ℝ and λ defined in Eq. 7, we compute GtS over the following
equation. To enhance readability, we will hereafter omit explicit time
dependencies in the variables:

STG=
STW

WTG

(19)

[

[

SRG
StG

0T 1
]

]
= [

[

SRW
StW

0T 1
]

]

[

[

WRG
WtG

0T 1
]

]
(20)

= [

[

SRW
WRG

SRW
WtG +

StW
0T 1

]

]
(21)

Frontiers in Robotics and AI 06 frontiersin.org

https://doi.org/10.3389/frobt.2024.1369566
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Falch and Lohan 10.3389/frobt.2024.1369566

With Eqs 19–21 we can compute GtS in the following way (Eqs
22, 23).

StG =
SRW

WtG +
StW

(22)

GtS = −
SRT

G (
SRWμW ̂tG + StW) (23)

W ̂tG is determined over SfM (Section 3.3.5) and with the
following regression model (Eqs 24–27) we determine μ and StW.

min
x

C

∑
i
‖S ̃gi − Sgi‖22

(24)

with
Sgi = SRW

WRi
Gλ

iG ̂gi + SRWμW ̂tiG +
StW

(25)

λi =
GzT ⋅ (−SRT

G (
SRWμW ̂tiG +

StW))
GzT G ̂gi

(26)

x = [μ, StxW,
StyW,

StzW]
T (27)

Stx,y,zW are the x,y,z coordinates of the vector StW. By solving this
regression problem and knowing the parameters in x we can
compute the transformation matrix STG in Eq. 19. To collect data,
in order to, solve the regression problem we perform the calibration
procedure described in Section 3.3.2. The methods presented in this
work have been implemented in Python and are publicly available
on GitHub (Falch, 2023).

4 Experiments and results

4.1 Evaluating the validity of the proposed
method

In this study, our primary focus is not on evaluating the
precision of the OpenVino CNN gaze estimation model or the
model trained on the ETH-XGaze dataset. Instead, our goal is to
showcase our proposed method, demonstrated on a single user. As
our work does not involve the determination of a gaze vector, we
utilize the pre-existing OpenVino gaze vector model. The reported
accuracy of the OpenVino gaze vector, as per internal assessments,
is 6.95° OpenVINO (accessed 2023). In addition we showcase our
method on the demo program for gaze estimation, specifically the
ETH-XGaze model available on github hysts on github (accessed
2023). Further available models are based on MIIGaze (Zhang et al.
2015), MPIIFaceGaze (Zhang et al., 2017) or any other model
available online.

For this demonstration, we engage a user in a simple calibration
process. The user is asked to maintain a stable head position and
focus on four specific calibration points displayed near the corners
of the screen within a rectangle. However, due to the inaccuracy
of OpenVino’s CNN model, the raw gaze vector provided by the

OpenVino model lacks precision, and the result is not a perfect
rectangle (see Figure 3).

To determine the distance between the user and the computer
screen and to project a unit gaze vector onto the screen, we
utilize the proposed regression model, which yields an estimated
transformation matrix denoted as STG. With this transformation
matrix we can now determine the 3D position of the user in front
of the computer screen with only a 2D webcam, without additional
hardware or markers.

To validate the user’s position in front of the screen, represented
by the translation vector of the homogeneous transformation
matrix STG, we conduct physical measurements. This involves
determining the distance between the user and the screen and
measuring the location from the upper left corner of the screen to
the gaze coordinate system, as defined in Figure 2. This verifies our
approach and is therefore the first method we know of, computing
the actual physical distance, respectively location of a user in front
of a computer screen with just four calibration points and without
using stereo imaging. Notably, the accuracy of this 3D position is
contingent on the precision of the model providing the gaze vector,
in our case, the OpenVino model and the model trained on ETH-
XGaze. To further validate ourmethod, we calculate the exact vector
that the OpenVino model should have delivered using the inverse of
the transformationmatrix ST−1G =

GTS. Employing the transformation
matrix GTS, we can then convert the displayed calibration points into
the gaze coordinate system, normalizing them in the process. The
calculated normalized gaze vectors obtained through this process
are then again used as input for the same regression problem,
resulting in the same transformation matrix as initially derived,
which concludes our validation. By converting the calibration points
into the gaze coordinate system, we can assess the accuracy of the
applied gaze estimation model by computing the angle between two
vectors (Eq. 28).

edeg = cos−1(
GgTG ̃g
‖G g‖‖G ̃g‖

) (28)

Gg is the gaze vector provided by the gaze estimation model and
G ̃g is the point displayed on the screen transformed into the gaze
coordinate system. For this specific trial we get an average error of
the four calibration points of 3.3°, which is in this case lower than
the reporter 6.95°. However, it is worth noting that the error varies
across the field of view, as illustrated in Figure 3. The same holds
for the ETH-XGaze dataset, as illustrated in Figure 8 in the paper of
Zhang et al. (2020).

4.2 Comparison of gaze tracking software

In this section, we conducted a comparative analysis of our
method with two established gaze tracking solutions: the Tobii
Eye Tracker 5 (Tobii, 2023) and GazeRecorder GazeRecorder
(accessed 2023), which is free for non-commercial use, however
the used methods and gaze tracking procedure is not available. The
reported accuracy on their website is 1°, while Heck et al. (2023)
state an accuracy of 1.43° in their review paper. GazeRecorder
stands out as a webcam-based gaze tracking system for computer
screens, as reported by Heck et al. (2023). The system is the most

Frontiers in Robotics and AI 07 frontiersin.org

https://doi.org/10.3389/frobt.2024.1369566
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Falch and Lohan 10.3389/frobt.2024.1369566

FIGURE 4
The proposed method is here compared with the Tobii Eye Tracker 5.

accurate among webcam-based gaze tracking software. Although, it
is important to note thatGazeRecorder necessitates a comprehensive
calibration process, involving around 30 calibration points.

TheTobii EyeTracker 5 is purpose-built for tracking user gaze on
a computer screen. This hardware is discreetly mounted beneath the
screen and relies on a sophisticated combination of infrared cameras
and stereo imaging to precisely monitor the user’s gaze. The precise
details of its proprietary technique are kept confidential as a closely
held company secret.

In this evaluation, we pitted our method against the high-end
Tobii hardware and GazeRecorder.

4.2.1 Comparison with no head movements
For this comparison we use the same trial as described in the

previous Section 4. Given that both the GazeRecorder software and
our method rely on the webcam, we had to conduct an additional
trial for GazeRecorder, as the webcam cannot be simultaneously
used by both applications. In the experiment, the user was
positioned in front of a computer screen at a distance of 800mm.
The screen had a resolution of 2560× 1440pixels and physical
dimensions of 597mm× 336mm.

To ensure accuracy, we synchronized the recording of both
webcam-based gaze tracking solutions with data from the Tobii
Eye Tracker 5. In Figure 4, the trajectory of the presented target is
depicted in blue, serving as the ground truth.The trajectory recorded
by theTobii EyeTracker 5 is represented in orange,while ourmethod
in combination with the OpenVino model is shown in green and
our method in combination with ETH-XGaze dataset is shown in
black. Both theOpenVinomodel and themodel trained on the ETH-
XGaze dataset yield distinct outputs, both of which serve as inputs in

our method for projecting the unit gaze vector onto the screen. This
highlights the critical importance of an accurate unit gaze vector
for our method. Despite their differences, the overall error along
this exemplary trajectory between the two models is comparable
(Table 1). It is worth noting that the number of samples collected by
theTobii EyeTracker 5 surpasses that of thewebcambased solutions.

In Figure 5, we present a comparison between GazeRecorder,
Tobii Eye Tracker 5, and the ground truth. The color scheme in this
figure corresponds to that in Figure 4 with the green trajectory for
GazeRecorder.Notably,GazeRecorder exhibits a lower sampling rate
compared to the Tobii Eye Tracker 5. This lower sampling rate can
be attributed to the webcam’s lower frame rate, which affects the rate
at which data is captured.

Furthermore, we calculated the Root Mean Squared Error
(RMSE) among the three gaze tracking solutions for this trial. The
RMSE was computed for the trajectories shown in both Figures 4,
5. The computed RMSE values are presented in Table 1. The RMSE
in millimeters represents the discrepancy between the ground truth
on the screen and the gaze point provided by each gaze tracking
system, at an 800mm screen-user distance. Additionally, the RMSE
in degrees measures the angular error between the ground truth
gaze vector and the corresponding vector delivered by each of the
three gaze tracking systems. It is evident that comparable results
were achieved between GazeRecorder, which stands out as one of
the most accurate webcam-based gaze tracking solutions, and our
proposedmethod.However, it is essential to note that these solutions
still cannot rival the precision of the highly sophisticated Tobii Eye
Tracker 5 solution.

For this specific trial, we did not attain the accuracy reported
by GazeRecorder and Heck et al. (2023). This deviation could be

Frontiers in Robotics and AI 08 frontiersin.org

https://doi.org/10.3389/frobt.2024.1369566
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Falch and Lohan 10.3389/frobt.2024.1369566

TABLE 1 The table presents the RMSE for the three gaze tracking solutions along a predefined trajectory without head movements.

Tobii eye tracker 5 GazeRecorder Proposed
method

Proposed
method

OpenVino ETX-Gaze

RMSE 15mm/0.9° 55mm/2.65° 53mm/3.3° 50mm/3.2°

FIGURE 5
The GazeRecorder is here compared with the Tobii Eye Tracker 5.

attributed to the experiments not being conducted in a controlled
laboratory environment, with not ideal lightning conditions,
potential influences from the user’s attention and gaze tracking
behavior when following a trajectory. However, it is essential to
highlight that, when computing the RMSE in degrees for this
trial, our method yields similar results to GazeRecorder. This
serves as an additional indication that our approach to compute a
transformationmatrix from the gaze coordinate system to the screen
is effective, enabling the precise projection of a unit gaze vector
onto the screen.

4.2.2 Head movements
In the context of head movements, we differentiate between

two types: head movements where the user simply turns their
head, corresponding to yaw and pitch movements and head
movements where the user moves their head from left to right,
or up and down.

For the next experiment, a point is presented at the center of the
screen. The user is instructed to focus their gaze on this point while
performing head movements: turning their head once to the left,
once to the right, and once up and down. This essentially involves
yaw and pitch movements. The movements were in the range ±30°
for yaw movements and ±25° for pitch movements. The results are
presented in Table 2.

In the following experiment, the user is once more tasked fixing
their gaze on a displayed point. However, this time, the user is
instructed to refrain from moving their head, but rather, to shift
their body to the left and then to the right, all while maintaining
their focus on the point. The movement was in a range of ±100mm
form the initial position, which was in the middle of the screen at
a distance of 800mm. The outcome of this experiment is detailed in
Table 3.

The accuracy and precision of our projection depends solely
on the gaze vector estimation model used. For instance, the Mean

Frontiers in Robotics and AI 09 frontiersin.org

https://doi.org/10.3389/frobt.2024.1369566
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Falch and Lohan 10.3389/frobt.2024.1369566

TABLE 2 The Root Mean Squared Error (RMSE) is calculated to compare the performance of the three gaze tracking solutions.

Tobii eye tracker 5 GazeRecorder Proposed method

RMSE 10mm/0.5° 80mm/4.1° 80mm/5.1°

In this particular experiment, a user maintains their gaze on a fixed point while turning their head.

TABLE 3 The Root Mean Squared Error (RMSE) is calculated to compare the performance of the three gaze tracking solutions.

Tobii eye tracker 5 GazeRecorder Proposed method

RMSE 10mm/0.6° 30mm/1.9° 60mm/4°

In this particular experiment, a user moves to the left and then to the right in front of the screen.

FIGURE 6
The initial segment represents a yaw movement, while the subsequent segment illustrates a pure lateral shift. The left axis corresponds to the
translation vector’s x-direction in WTG, while the right axis denotes the yaw angle in degrees.

Absolute Error (MAE) of OpenVino is 6.95°, with a standard
deviation of 3.58°. Accuracy and precision metrics for models
trained on the ETH-XGaze dataset are available on the ETH-
XGaze competition website CodaLab (accessed 2023). These initial
experiments, though conducted on only one person, already
indicate that 2D webcam-based solutions, including GazeRecorder,
fail to effectively accommodate precise head movements. These
experiments merely serve to highlight the persistent limitations
associated with head movements when using 2D webcam-based
gaze tracking. This limitation, also recognized by Heck et al. (2023),
becomes evident after just one trial. Specifically, lateral movements,
such as those to the left or right, are not adequately addressed
in any of the trained models. For example, GazeRecorder restricts

horizontal head movements by positioning the user centrally and
issuing alerts for excessive shifts. In the subsequent section, we delve
into the challenges associated with lateral movements, illustrate the
issue using the OpenVino model, and propose a solution to address
these challenges using SfM.

4.2.3 Applying structure from motion
The proposed method compensates for horizontal head

movements in which a user shifts left or right by utilizing SfM
to track the user’s movement. To achieve this, we apply the model
introduced in Section 3.3.5. In our first experiment using thismodel,
we replicate the conditions detailed in Section 4.2.1, where the user
is instructed to follow a target trajectory while keeping their head

Frontiers in Robotics and AI 10 frontiersin.org

https://doi.org/10.3389/frobt.2024.1369566
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Falch and Lohan 10.3389/frobt.2024.1369566

stationary. The results of this experiment align with those presented
in Table 1, showcasing similar outcomes and reinforcing the validity
of the approach.

In the subsequent experiment, participants are instructed
turning their head to the left and right (yaw-movement). Head
movements can introduce subtle changes in the translation vector
of WTG since the eyes are not precisely aligned with the head’s axis
of rotation. However, it is essential to note that the OpenVino CNN
model already compensates for these head movements. Therefore,
both yaw and pitch rotations need to be accounted for in the
translation vector of WTG.

Furthermore, when a user moves to the left or right without
actually performing a yaw head movement, the 2D camera
perspective makes it appear as if a yaw movement occurred. This
is because the user is filmed from the side, causing the linear
movement to mimic a yaw movement from the CNN model’s
perspective. These particular movements are not considered in the
CNN model’s calculations.

With the proposed method, which determines the actual
location of a person in front of the computer screen, we are
able to illustrate the mentioned two scenarios in Figure 6. One
movement features a pure yaw movement and another involves
lateral head movements to the left and right without head rotation.
The visual representation demonstrates that a pure yaw movement
leads to a translation in the x-direction of the WTG translation
vector, as indicated in blue. However, when a user moves laterally, a
significant change occurs in the x-direction of the translation vector,
along with a shift in the yaw angle. This change in the yaw angle
happens even when the user does not physically turn their head,
a phenomenon attributed to the side-view camera perspective, as
previously explained.

To accurately distinguish between these movements, a CNN
model should undergo specialized training. This training process
should include an additional input: the user’s position in front of the
screen, determined through SfM techniques. With existing eye gaze
datasets like (Zhang et al., 2020 or Tonsen et al., 2016) we propose
to account for lateral head movements and improve webcam based
gaze tracking.

5 Conclusion and future work

In this study, we presented a novel method for webcam
based gaze estimation on a computer screen requiring only
four calibration points. Our focus was not on evaluating the
precision of any appearance based CNN gaze estimation model
but on demonstrating our proposed method on a single user.
We presented a methodology to project a gaze vector onto a
screen with an unknown distance. The proposed regression model
determined a transformation matrix, STG, allowing the conversion
of the gaze vector from the gaze coordinate system to the screen
coordinate system.

Physical validation of the user’s position in front of the
screen confirmed the soundness of our approach, representing
a novel method for determining the physical distance and
location of a user without stereo imaging. The method’s
accuracy is contingent on the precision of the gaze vector

model, here the OpenVINO model and a model trained on the
ETH-XGaze dataset.

Comparisons with established gaze-tracking solutions, Tobii
Eye Tracker 5 and GazeRecorder, showcased comparable results,
indicating the potential efficacy of ourmethod. Further experiments
addressed head movements, highlighting the limitations of 2D
webcam-based solutions and proposing compensation using SfM
techniques.

Future work should focus on refining the proposed method
to enhance accuracy, especially in uncontrolled environments.
Specialized training of CNN models, incorporating user position
via SfM, should be explored using data sets like (Zhang et al., 2020
or Tonsen et al., 2016). The CNN trained with these adjustments
should be able to effectively differentiate between lateral movements
to the left or right and specific head movements, such as yaw and
pitch rotations.

Moreover, there is potential for enhancing sensitivity to cope
with varying lighting conditions.The introduction of supplementary
filtering mechanisms may aid in bolstering accuracy, particularly in
challenging lighting scenarios.

Generally, webcam-based gaze tracking solutions, exhibit
a notable sensitivity to varying lighting conditions. It is
essential to underscore that the overall accuracy of our
proposed method is intrinsically tied to the precision of the
raw gaze vector generated by the gaze estimation model. In
this study we have conclusively demonstrated that webcam-
based solutions, while promising, still cannot attain the level
of accuracy achieved by sophisticated gaze tracking hardware,
which frequently leverages advanced technologies such as
stereo vision and infrared cameras. Consequently, the pursuit
of further research endeavors is imperative in order to bridge
the existing gap and elevate webcam-based solutions to a
level of accuracy comparable to that of purpose-built eye
tracking hardware.

Data availability statement

Publicly available gaze estimation models were analyzed
in this study. The implementation of the concept
presented in this paper can be found here: https://github.
com/FalchLucas/WebCamGazeEstimation.

Author contributions

LF: Conceptualization, Formal Analysis, Investigation,
Methodology, Software, Validation, Writing–original draft,
Writing–review and editing. KL: Funding acquisition, Project
administration, Resources, Writing–review and editing.

Funding

The authors declare that financial support was received
for the research, authorship, and/or publication of this article.
This project received funding from Innosuisse—the Swiss
Innovation Agency, under the grant number 100.440 IP-ICT,

Frontiers in Robotics and AI 11 frontiersin.org

https://doi.org/10.3389/frobt.2024.1369566
https://github.com/FalchLucas/WebCamGazeEstimation
https://github.com/FalchLucas/WebCamGazeEstimation
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Falch and Lohan 10.3389/frobt.2024.1369566

for the development of Innovative Visualization Tools for
Big Battery Data.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those
of the authors and do not necessarily represent those of
their affiliated organizations, or those of the publisher,
the editors and the reviewers. Any product that may
be evaluated in this article, or claim that may be made
by its manufacturer, is not guaranteed or endorsed by
the publisher.

References

Arar, N. M., Gao, H., and Thiran, J.-P. (2016). A regression-based user calibration
framework for real-time gaze estimation. IEEE Trans. Circuits Syst. Video Technol. 26,
2069–2082.

Audun, M. (2023). clmtrackr: javascript library for precise tracking of facial features
via constrained local models. Available at: https://github.com/auduno/clmtrackr.

Cai, X., Chen, B., Zeng, J., Zhang, J., Sun, Y., Wang, X., et al. (2021). Gaze
estimation with an ensemble of four architectures. arXiv preprint arXiv:2107.01980.
doi:10.48550/arXiv.2107.01980

Chen, J., and Ji, Q. (2008). “3d gaze estimation with a single camera without ir
illumination,” in 2008 19th International Conference on Pattern Recognition, 1–4.

Chi, J. N., Zhang, C., Yan, Y. T., Liu, Y., and Zhang, H. (2009). “Eye gaze
calculation based on nonlinear polynomial and generalized regression neural network,”
in 5th International Conference on Natural Computation, ICNC 2009, 617–623.
doi:10.1109/ICNC.2009.599

CodaLab (2023). CodaLab - ETH-XGaze competition

Falch, L. (2023). Gaze estimation. Available at: https://github.
com/FalchLucas/GazeEstimation.

Ferhat, O., and Vilariño, F. (2016). Low cost eye tracking: the current panorama.
Comput. Intell. Neurosci. 2016, 1, 14. doi:10.1155/2016/8680541

GazeRecorder (2023). Gazepointer - real-time gaze tracker for hands-free mouse
cursor control. Available at: https://gazerecorder.com/gazepointer/.

Hansen, D.W., and Pece, A. E. C. (2005). Eye tracking in the wild.Comput. Vis. Image
Underst. 98, 155–181. doi:10.1016/j.cviu.2004.07.013

Hartley, R. I., and Zisserman, A. (2004). Multiple view geometry in computer vision.
second edn. Cambridge University Press. 0521540518.

Heck, M., Deutscher, V., and Becker, C. (2023). “Webcam eye tracking for desktop
andmobile devices: a systematicreview,” in Proceedings of the 56thHawaii International
Conference on System Science.

Hennessey, C., Noureddin, B., and Lawrence, P. (2006). “A single camera eye-gaze
tracking system with free head motion,” in Proceedings of the 2006 Symposium on Eye
Tracking Research and Applications, San Diego, CA (New York, NY: Association for
Computing Machinery), 87–94. doi:10.1145/1117309.1117349

hysts on github (2023). A demo program of gaze estimation models (mpiigaze,
mpiifacegaze, eth-xgaze). Available at: https://github.com/hysts/pytorch_mpiigaze_
demo?tab=readme-ov-file.

Intel Corporation (2023). Openvino model: facial landmarks 35 adas 0002

Kar, A., and Corcoran, P. (2017). A review and analysis of eye-gaze estimation
systems, algorithms and performance evaluationmethods in consumer platforms. IEEE
Access 5, 16495–16519. doi:10.1109/ACCESS.2017.2735633

Krafka, K., Khosla, A., Kellnhofer, P., Kannan, H., Bhandarkar, S., Matusik, W., et al.
(2016). “Eye tracking for everyone,” in 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Los Alamitos, CA, USA (IEEE Computer Society),
2176–2184. doi:10.1109/CVPR.2016.239

Muhammad Usman Ghani, M. M. N. G., Chaudhry, S., Sohail, M., and Geelani, M.
N. (2013). Gazepointer: a real timemouse pointer control implementation based on eye
gaze tracking. INMIC, 154–159. doi:10.1109/inmic.2013.6731342

NVIDIA (2023). NVIDIA TAO toolkit - GazeNet model

OpenCV (2023). Camera calibration with opencv. Available at: https://docs.opencv.
org/4.x/dc/dbb/tutorial_py_calibration.html.

OpenVINO (2023). Gaze estimation adas 0002 model. Available at: https://docs.
openvino.ai/latest/omz_models_model_gaze_estimation_adas_0002.html.

Papoutsaki, A., Sangkloy, P., Laskey, J., Daskalova, N., Huang, J., and Hays, J. (2016).
“Webgazer: scalable webcam eye tracking using user interactions,” in Proceedings of the
Twenty-Fifth International Joint Conference on Artificial Intelligence (New York, NY:
AAAI Press), 3839–3845.

Sewell, W., and Komogortsev, O. (2010). “Real-time eye gaze tracking with an
unmodified commodity webcam employing a neural network,” in CHI EA ’10 CHI ’10
Extended Abstracts on Human Factors in Computing Systems, Atlanta, GA (New York,
NY:Association for ComputingMachinery), 3739–3744. doi:10.1145/1753846.1754048

Sogo, H. (2013). Gazeparser: an open-source and multiplatform library for low-cost
eye tracking and analysis. Behav. Res. Methods 45, 684–695. doi:10.3758/s13428-012-
0286-x

Sugano, Y., Matsushita, Y., and Sato, Y. (2014). “Learning-by-synthesis for
appearance-based 3d gaze estimation,” in 2014 IEEE Conference on Computer Vision
and Pattern Recognition, 1821–1828. doi:10.1109/CVPR.2014.235

Tan, K.-H., Kriegman, D., and Ahuja, N. (2002). “Appearance-based eye gaze
estimation,” in Proceedings Sixth IEEE Workshop on Applications of Computer Vision,
2002 (WACV 2002), 191–195. doi:10.1109/ACV.2002.1182180

Tobii (2023). Tobii eye tracker 5

Tobii group. (2023). Tobii group

Tonsen, M., Zhang, X., Sugano, Y., and Bulling, A. (2016). “Labelled pupils in the
wild: a dataset for studying pupil detection in unconstrained environments,” in ETRA
’16 Proceedings of the Ninth Biennial ACM Symposium on Eye Tracking Research and
Applications, Charleston, SC (New York, NY: Association for Computing Machinery),
139–142. doi:10.1145/2857491.2857520

Xu, P., Ehinger, K. A., Zhang, Y., Finkelstein, A., Kulkarni, S. R., and Xiao, J.
(2015). Turkergaze: crowdsourcing saliency with webcam based eye tracking. ArXiv
abs/1504.06755

Yoo, D. H., and Chung, M. J. (2005). A novel non-intrusive eye gaze estimation
using cross-ratio under large head motion. Comput. Vis. Image Underst. 98, 25–51.
doi:10.1016/j.cviu.2004.07.011

Zhang, X., Park, S., Beeler, T., Bradley,D., Tang, S., andHilliges,O. (2020). “Eth-xgaze:
a large scale dataset for gaze estimation under extreme head pose and gaze variation,”
in European Conference on Computer Vision (ECCV), Cham. Editors A. Vedaldi, H.
Bischof, T. Brox, and J.-M. Frahm (Springer). of Lecture Notes in Computer Science,
12350. doi:10.1007/978-3-030-58558-7_22

Zhang, X., Sugano, Y., and Bulling, A. (2018). “Revisiting data normalization for
appearance-based gaze estimation,” in ETRA ’18 Proceedings of the 2018 ACM
Symposium on Eye Tracking Research and Applications, Warsaw, Poland (New York,
NY: Association for Computing Machinery). doi:10.1145/3204493.3204548

Zhang, X., Sugano, Y., Fritz, M., and Bulling, A. (2015). “Appearance-based gaze
estimation in the wild,” in 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 4511–4520. doi:10.1109/CVPR.2015.7299081

Zhang, X., Sugano, Y., Fritz, M., and Bulling, A. (2017). “It’s written all over
your face: full-face appearance-based gaze estimation,” in 2017 IEEE Conference
on Computer Vision and Pattern Recognition Workshops (CVPRW), 2299–2308.
doi:10.1109/CVPRW.2017.284

Zhu, Z., and Ji, Q. (2005). “Eye gaze tracking under natural head movements,” in
2005 IEEEComputer Society Conference onComputer Vision and Pattern Recognition
(CVPR’05) 1, 918–923.

Frontiers in Robotics and AI 12 frontiersin.org

https://doi.org/10.3389/frobt.2024.1369566
https://github.com/auduno/clmtrackr
https://doi.org/10.48550/arXiv.2107.01980
https://doi.org/10.1109/ICNC.2009.599
https://github.com/FalchLucas/GazeEstimation
https://github.com/FalchLucas/GazeEstimation
https://doi.org/10.1155/2016/8680541
https://gazerecorder.com/gazepointer/
https://doi.org/10.1016/j.cviu.2004.07.013
https://doi.org/10.1145/1117309.1117349
https://github.com/hysts/pytorch_mpiigaze_demo?tab=readme-ov-file
https://github.com/hysts/pytorch_mpiigaze_demo?tab=readme-ov-file
https://doi.org/10.1109/ACCESS.2017.2735633
https://doi.org/10.1109/CVPR.2016.239
https://doi.org/10.1109/inmic.2013.6731342
https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html
https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html
https://docs.openvino.ai/latest/omz_models_model_gaze_estimation_adas_0002.html
https://docs.openvino.ai/latest/omz_models_model_gaze_estimation_adas_0002.html
https://doi.org/10.1145/1753846.1754048
https://doi.org/10.3758/s13428-012-0286-x
https://doi.org/10.3758/s13428-012-0286-x
https://doi.org/10.1109/CVPR.2014.235
https://doi.org/10.1109/ACV.2002.1182180
https://doi.org/10.1145/2857491.2857520
https://doi.org/10.1016/j.cviu.2004.07.011
https://doi.org/10.1007/978-3-030-58558-7_22
https://doi.org/10.1145/3204493.3204548
https://doi.org/10.1109/CVPR.2015.7299081
https://doi.org/10.1109/CVPRW.2017.284
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

	1 Introduction
	2 Related work
	3 Methodology
	3.1 Acquisition of gaze vector
	3.2 Definition of coordinate systems
	3.3 Projecting gaze unit vector onto computer screen
	3.3.1 Transformation matrix screen to gaze
	3.3.2 Calibration process
	3.3.3 Regression problem
	3.3.4 Improve gaze estimation
	3.3.5 Structure from motion for head movements


	4 Experiments and results
	4.1 Evaluating the validity of the proposed method
	4.2 Comparison of gaze tracking software
	4.2.1 Comparison with no head movements
	4.2.2 Head movements
	4.2.3 Applying structure from motion


	5 Conclusion and future work
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

